A note on large Kakeya sets

نویسندگان

چکیده

Abstract A Kakeya set

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Kakeya Maximal Operator

In this paper we obtain an upper bound for the L2 norm for maximal operators associated to arbitrary finite sets of directions in R 2.

متن کامل

Kakeya sets of curves

In this paper we investigate an analogue for curves of the famous Kakeya conjecture about straight lines. The simplest version of the latter asks whether a set in R that includes a unit line segment in every direction must necessarily have dimension n. The analogue we have in mind replaces the line segments by curved arcs from a specified family. (This is a quite different problem from that con...

متن کامل

Kakeya Sets in Cantor Directions

In this paper, we prove the following.

متن کامل

Algorithmic information and plane Kakeya sets

We formulate the conditional Kolmogorov complexity of x given y at preci-sion r, where x and y are points in Euclidean spaces and r is a natural number.We demonstrate the utility of this notion in two ways.1. We prove a point-to-set principle that enables one to use the (relativized,constructive) dimension of a single point in a set E in a Euclidean space toestablish a l...

متن کامل

Hunter, Cauchy Rabbit, and Optimal Kakeya Sets

A planar set that contains a unit segment in every direction is called a Kakeya set. We relate these sets to a game of pursuit on a cycle Zn. A hunter and a rabbit move on the nodes of Zn without seeing each other. At each step, the hunter moves to a neighbouring vertex or stays in place, while the rabbit is free to jump to any node. Adler et al (2003) provide strategies for hunter and rabbit t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Geometry

سال: 2021

ISSN: ['1615-715X', '1615-7168']

DOI: https://doi.org/10.1515/advgeom-2021-0018